**CSETMathGuru: THE Site for Single Subject Math**

**Subtest I Online Resources**

Here are some excellent Precalculus resources to review:

An outstanding site is Paul's Online Notes: http://tutorial.math.lamar.edu/

Here is a listing of all the material that is currently available in these notes: http://tutorial.math.lamar.edu/downloadfile.aspx?file=B,9,N

An excellent site for Math tutorials is http://patrickjmt.com/ [use the ALGEBRA section selectively -- some of the links for basic Algebra ~ what is called Algebra I are

ALGEBRA

- Review
Calculus [a good overview of Precalculus]: http://www.youtube.com/watch?v=CtRAHmeWSC0**for** - Algebra 2 Review: http://www.youtube.com/user/brightstorm2/videos?query=Algebra+2
- Video lessons: http://www.brightstorm.com/math/precalculus/
- Comprehensive Tutorials from a prominent textbook publisher!: http://college.cengage.com/mathematics/larson/precalculus_limits/1e2/ins_resources/ap.html
- UC Davis Problems page with Solutions! http://www.math.ucdavis.edu/~marx/precalculus.html
- Tutorial: http://jwbales.home.mindspring.com/precal/
- http://www.bmlc.ca/Pre-Calculus%20Math%2040s.html
- http://www.sosmath.com/cyberexam/precalc/test.html
- Take Precalculus Quizzes: http://math.tntech.edu/machida/MATH_GO/Precalculus_Review/
- http://www.themathpage.com/aprecalc/precalculus.htm
- Practice Problems: http://frank.mtsu.edu/~jhart/pcalrev.pdf
- Precalculus Tutorial: http://www.analyzemath.com/PrecalculusTutorials.html
- Massive number of Problems with Solutions: http://www.analyzemath.com/precalculustests.html#math_problems

An outstanding site is Paul's Online Notes: http://tutorial.math.lamar.edu/

Here is a listing of all the material that is currently available in these notes: http://tutorial.math.lamar.edu/downloadfile.aspx?file=B,9,N

**Preliminaries****Integer Exponents**In this section we will start looking at exponents and their properties.**Rational Exponents**We will define rational exponents in this section and extend the properties from the previous section to rational exponents.**Real Exponents**This is a short acknowledgment that the exponent properties from the previous two sections will hold for any real exponent.**Radicals**Here we will define radical notation and relate radicals to rational exponents. We will also give the properties of radicals.**Polynomials**We will introduce the basics of polynomials in this section including adding, subtracting and multiplying polynomials.**Factoring Polynomials**This is the most important section of all the preliminaries. Factoring polynomials will appear in pretty much every chapter in this course. Without the ability to factor polynomials you will be unable to complete this course.**Rational Expressions**In this section we will define rational expressions and discuss adding, subtracting, multiplying and dividing them.**Complex Numbers**Here is a very quick primer on complex numbers and how to manipulate them.**Solving Equations and Inequalities****Solutions and Solution Sets**We introduce some of the basic notation and ideas involved in solving in this section.**Linear Equations**In this section we will solve linear equations, including equations with rational expressions.**Applications of Linear Equations**We will take a quick look at applications of linear equations in this section.**Equations With More Than One Variable**Here we will look at solving equations with more than one variable in them.**Quadratic Equations, Part I**In this section we will start looking at solving quadratic equations. We will look at factoring and the square root property in this section.**Quadratic Equations, Part II**We will finish up solving quadratic equations in this section. We will look at completing the square and quadratic formula in this section.**Quadratic Equations : A Summary**We’ll give a procedure for determining which method to use in solving quadratic equations in this section. We will also take a quick look at the discriminant.**Applications of Quadratic Equations**Here we will revisit some of the applications we saw in the linear application section, only this time they will involve solving a quadratic equation.**Equations Reducible to Quadratic Form**In this section we will solve equations that can be reduced to quadratic in form.**Equations with Radicals**Here we will solve equations with square roots in them.**Linear Inequalities**We will start solving inequalities in this section by looking at linear inequalities.**Polynomial Inequalities**In this section we will look at solving inequalities that contain polynomials.**Rational Inequalities**Here we will solve inequalities involving rational expressions.**Absolute Value Equations**We will officially define absolute value in this section and solve equations that contain absolute value.**Absolute Value Inequalities**We will solve inequalities that involve absolute value in this section.**Graphing and Functions****Graphing**In this section we will introduce the Cartesian coordinate system and most of the basics of graphing equations.**Lines**Here we will review the main ideas from the study of lines including slope and the special forms of the equation of a line.**Circles**We will look at the equation of a circle and graphing circles in this section.**The Definition of a Function**We will discuss the definition of a function in this section. We will also introduce the idea of function evaluation.**Graphing Functions**In this section we will look at the basics of graphing functions. We will also graph some piecewise functions in this section.**Combining functions**Here we will look at basic arithmetic involving functions as well as function composition.**Inverse Functions**We will define and find inverse functions in this section.**Common Graphs****Lines, Circles and Piecewise Functions**This section is here only to acknowledge that we’ve already talked about graphing these in a previous chapter.**Parabolas**We’ll be graphing parabolas in this section.**Ellipses**In this section we will graph ellipses.**Hyperbolas**Here we will be graphing hyperbolas.**Miscellaneous Functions**In this section we will graph a couple of common functions that don’t really take all that much work to so. We’ll be looking at the constant function, square root, absolute value and a simple cubic function.**Transformations**We will be looking at shifts and reflections of graphs in this section. Collectively these are often called transformations.**Symmetry**We will briefly discuss the topic of symmetry in this section.**Rational Functions**In this section we will graph some rational functions. We will also be taking a look at vertical and horizontal asymptotes.**Polynomial Functions****Dividing Polynomials**We’ll review some of the basics of dividing polynomials in this section.**Zeroes/Roots of Polynomials**In this section we’ll define just what zeroes/roots of polynomials are and give some of the more important facts concerning them.**Graphing Polynomials**Here we will give a process that will allow us to get a rough sketch of some polynomials.**Finding Zeroes of Polynomials**We’ll look at a process that will allow us to find some of the zeroes of a polynomial and in special cases all of the zeroes.**Partial Fractions**In this section we will take a look at the process of partial fractions and finding the partial fraction decomposition of a rational expression.**Exponential and Logarithm Functions****Exponential Functions**In this section we will introduce exponential functions. We will be taking a look at some of the properties of exponential functions.**Logarithm Functions**Here we will introduce logarithm functions. We be looking at how to evaluate logarithms as well as the properties of logarithms.**Solving Exponential Equations**We will be solving equations that contain exponentials in this section.**Solving Logarithm Equations**Here we will solve equations that contain logarithms.**Applications**In this section we will look at a couple of applications of exponential functions and an application of logarithms.**Systems of Equations****Linear Systems with Two Variables**In this section we will use systems of two equations and two variables to introduce two of the main methods for solving systems of equations.**Linear Systems with Three Variables**Here we will work a quick example to show how to use the methods to solve systems of three equations with three variables.**Augmented Matrices**We will look at the third main method for solving systems in this section. We will look at systems of two equations and systems of three equations.**More on the Augmented Matrix**In this section we will take a look at some special cases to the solutions to systems and how to identify them using the augmented matrix method.**Nonlinear Systems**We will take a quick look at solving nonlinear systems of equations in this section.An excellent site for Math tutorials is http://patrickjmt.com/ [use the ALGEBRA section selectively -- some of the links for basic Algebra ~ what is called Algebra I are

__not__relevant for Subtest I!]ALGEBRA

- Arithmetic Basics: Long Division of Numbers
- Arithmetic Basics: Finding the Percent of a Number
- Arithmetic Basics: Multiplying Decimals
- Arithmetic Basics: Dividing Decimals
- Arithmetic Basics: Converting Decimals into Fractions
- Fractions – Adding and Subtracting
- Fractions: Adding and Subtracting – Numerical and Variable Examples
- Fractions: Adding and Subtracting Fractions with Different Denominators
- Fractions – Multiplying and Dividing
- Basic Math: Dividing Fractions
- Comparing Fractions using Inequalities – Ex 1
- Comparing Fractions using Inequalities – Ex 2
- Fractions: Multiplying, Reducing, Adding and Subtracting
- Simplifying Complex Fractions – Ex 1
- Simplifying Complex Fractions – Ex 2
- Simplifying Complex Fractions – Ex 3
- Partial Fraction Decomposition – Example 1
- Partial Fraction Decomposition – Example 2
- Partial Fraction Decomposition – Example 4
- Partial Fraction Decomposition – Example 5
- Partial Fraction Decomposition – Example 6
- Averages and Word Problems – Basic Example
- Averages: Finding an Average Grade You Need to Make to Bring Your Grade up to a Desired Amount
- Averages: What Grade do I Need on the Final to Pass the Class?!
- Radical Notation and Simplifying Radicals
- Radicals: Simplifying Radical Expressions Involving Variables – Ex 1
- Simplifying Numbers under Square Roots
- Rationalize the Denominator
- Rationalizing the Denominator – Ex 1
- Rationalize the Denominator – Harder Example
- Rationalizing the Denominator – Ex 3
- Factoring a Number
- Factoring a Number
- Greatest Common Factor, GCF
- Least Common Multiple
- An Intro to Solving Linear Equations: What Does it Mean to be a Solution?
- An Intro to Solving Linear Equations: Solving some Basic Linear Equations
- An Intro to Solving Linear Equations: Solving some Basic Linear Equations, Ex 2
- Solving Linear Equations
- Solving Linear Equations – Example 1
- Solving a Basic Linear Equation – Example 2
- Solving a Basic Linear Equation – Example 3
- Direct Variation / Direct Proportion – Ex 1
- Direct Variation / Direct Proportion – Ex 2
- Direct Variation / Direct Proportion – Ex 3
- Slope of a Line
- Equation of a Line: Point-Slope Form
- Graphing a Line Using a Point and Slope
- Linear Functions: Graphing by Finding X,Y Intercept
- An Introduction To Solving Inequalities – Ex 1
- An Introduction To Solving Inequalities – Ex 2
- An Introduction To Solving Inequalities – Ex 3
- Fundamental True/False Questions about Inequalities!
- Solving Word Problems Involving Inequalities – Ex 1
- Solving Word Problems Involving Inequalities – Ex 2
- Solving Word Problems Involving Inequalities – Ex 3
- Using Interval Notation to Express Inequalities – Ex 1
- Using Interval Notation to Express Inequalities – Ex 2
- Interval Notation – A basic question!
- Writing Compound Inequalities Using Interval Notation – Ex 1
- Writing Compound Inequalities Using Interval Notation – Ex 2
- Writing Compound Inequalities Using Interval Notation – Ex 3
- Absolute Value: Evaluating Numbers
- Absolute Value: Evaluating Expressions – Ex 1
- Absolute Value: Evaluating Expressions – Ex 2
- Absolute Value: Evaluating Expressions – Ex 3
- Matching Number Lines with Absolute Value Inequalities – Ex 1
- Solving Absolute Value Equations – Ex 1
- Solving Absolute Value Equations – Ex 2
- Solving Absolute Value Equations Containing TWO Absolute Value Expressions – Ex 1
- Solving Absolute Value Equations Containing TWO Absolute Value Expressions – Ex 2
- Solving Absolute Value Equations Containing TWO Absolute Value Expressions – Ex 3
- Solving Absolute Value Inequalities – Ex 1
- Solving Absolute Value Inequalities – Ex 2
- Solving Absolute Value Inequalities – Ex 3
- Solving Absolute Value Inequalities, MORE Ex 1
- Solving Absolute Value Inequalities, MORE Ex 2
- Solving Linear Absolute Value Equations and Inequalities
- Graphing Systems of Linear Inequalities – Ex 1
- Graphing Systems of Linear Inequalities – Ex 2
- Solving Linear Compound Inequalities – Ex 1
- Solving Linear Compound Inequalities – Ex 2
- Solving Linear Compound Inequalities – Ex 3
- Exponents: Basic Properties
- Exponents: Basic Problems – Ex 1
- Exponents: Basic Problems – Ex 2
- Exponents: A Few True/False Questions
- Exponents: Evaluating Expressions (Numbers Only, No Variables) – Ex 1
- Exponents: Evaluating Expressions (Numbers Only, No Variables) – Ex 2
- Exponents: Evaluating Expressions (Numbers Only, No Variables) – Ex 3
- Exponents: Applying the Rules of Exponents – Basic Ex 1
- Exponents: Applying the Rules of Exponents – Basic Ex 2
- Exponents: Applying the Rules of Exponents – Basic Ex 3
- Exponents: Applying the Rules of Exponents – Basic Ex 3
- Exponents: Negative Exponents
- Negative Exponents – Basic Rules and Examples
- Exponents: Simplifying Expressions with Negative Exponents – Ex 1
- Exponents: Simplifying Expressions with Negative Exponents – Ex 2
- Exponents: Simplifying Expressions with Negative Exponents – Ex 3
- Exponents: Numbers Raised to Fractional Exponents
- Exponents: Evaluating Numbers Raised to Fractional Exponents
- Exponents: Evaluating Numbers with Rational Exponents by using Radical Notation – Basic Ex 1
- Exponents: Multiplying Variables with Rational Exponents – Basic Ex 1
- Exponents: Multiplying Variables with Rational Exponents – Basic Ex 2
- Polynomial… or NOT?! Recognizing Polynomials, the degree and some Terminology
- Symmetry – A Quick Discussion for Testing if a Polynomial is Even / Odd
- Polynomials: Adding and Subtracting
- Polynomials: Adding, Subtracting, Multiplying and Simplifying – Ex 1
- Polynomials: Adding, Subtracting, Multiplying and Simplifying – Ex 2
- Polynomials: Adding, Subtracting, Multiplying and Simplifying – Ex 3
- Polynomials: Multiplying – Slightly Harder Ex 1
- Polynomials: Multiplying – Slightly Harder Ex 2
- Polynomials: Multiplying – Slightly Harder Ex 3
- Polynomials: Multiplying – Slightly Harder Ex 4 – Cubing Binomials
- Polynomials: Multiplying – Slightly Harder Ex 5 – Cubing Binomials
- Polynomials: Multiplying – Slightly Harder Ex 6
- Long Division of Polynomials
- Long Division of Polynomials – A slightly harder example
- Synthetic Division
- Synthetic Division – Ex 2
- The Remainder Theorem – Example 1
- The Remainder Theorem – Example 2
- Factoring Trinomials (A quadratic Trinomial) by Trial and Error
- Factoring Trinomials by Trial and Error – Ex 2
- Factoring Trinomials: Factor by Grouping – Ex 1
- Factoring Trinomials: Factor by Grouping – Ex 2
- Factoring Trinomials: Factor by Grouping – Ex 3
- Factoring Perfect Square Trinomials – Ex1
- Factoring Perfect Square Trinomials – Ex 2
- Factoring Perfect Square Trinomials – Ex3
- Factoring the Difference of Two Squares – Ex 1
- Factoring the Difference of Two Squares – Ex 2
- Factoring the Difference of Two Squares – Ex 3
- Factoring Sums and Differences of Cubes
- Factoring Sums and Differences of Cubes – Ex 3
- Factoring Using the Great Common Factor, GCF – Ex 1
- Factoring Using the Great Common Factor, GCF – Ex 2 – Factoring Out Binomials
- Finding all the Zeros of a Polynomial – Example 1
- Finding all the Zeros of a Polynomial – Example 2
- Finding all the Zeros of a Polynomial – Example 3
- Finding the Formula for a Polynomial Given: Zeros/Roots, Degree, and One Point – Example 1
- Finding the Formula for a Polynomial Given: Zeros/Roots, Degree, and One Point – Example 2
- Finding the Formula for a Polynomial Given: Zeros/Roots, Degree, and One Point – Example 3
- Rational Roots Test
- Descartes’ Rule of Signs
- The Conjugate Pair Theorem – Example 1
- The Conjugate Pair Theorem – Example 2
- Quadratic Equations – Factoring and Quadratic Formula
- Solving Quadratic Equations by Factoring – Basic Examples
- Solving Quadratic Equations by Factoring – Another Example
- Factoring by Grouping
- Factoring by Grouping – Ex 1
- Factoring By Grouping – Ex 2
- Quadratic Equations – Completing the Square
- Completing the Square – Solving Quadratic Equations
- Completing the Square: Solving Quadratic Equations – Ex 2
- Completing the Square to Solve Quadratic Equations: More Ex 1
- Completing the Square to Solve Quadratic Equations: More Ex 2
- Completing the Square to Solve Quadratic Equations: More Ex 3
- Completing the Square to Solve Quadratic Equations: More Ex 4
- Completing the Square to Solve Quadratic Equations: More Ex 5
- Completing the Square to Solve Quadratic Equations: More Ex 6
- Quadratic Formula
- Quadratic Formula: How to Derive
- Solving Quadratic Equations using the Quadratic Formula – Ex 1
- Solving Quadratic Equations using the Quadratic Formula – Ex 2
- Solving Quadratic Equations using the Quadratic Formula – Ex 3
- Quadratic Equations: Using the Discriminant
- Using the Discriminant to Predict the Types of Solutions to a Quadratic Equation – Ex 1
- Using the Discriminant to Predict the Types of Solutions to a Quadratic Equation – Ex 2
- Using the Discriminant to Predict the Types of Solutions to a Quadratic Equation – Ex 3
- Graphing Quadratic Functions – Ex 1
- Solving Fancy Quadratics – Ex 1
- Solving Fancy Quadratics – Ex 2
- Solving Fancy Quadratics – Ex 3
- Solving a Geometry Word Problem by Using Quadratic Equations – Ex 1
- Solving a Geometry Word Problem by Using Quadratic Equations – Ex 2
- Solving a Geometry Word Problem by Using Quadratic Equations – Ex 3
- Solving for ‘X’ ; Quadratic Equations Involving the Pythagorean Theorem – Ex 1
- Solving for ‘X’ ; Quadratic Equations Involving the Pythagorean Theorem – Ex 2
- Solving for ‘X’ ; Quadratic Equations Involving the Pythagorean Theorem – Ex 3
- Solving Word Problems in Distance, Rate, and Time Using Quadratics – Ex 1
- Solving Word Problems in Distance, Rate, and Time Using Quadratics – Ex 2
- Solving Word Problems in Distance, Rate, and Time Using Quadratics – Ex 3
- Solving a Projectile Problem Using Quadratics – Ex 1
- Solving a Projectile Problem Using Quadratics – Ex 2
- Solving a Projectile Problem Using Quadratics – Ex 3
- More Word Problems Using Quadratic Equations – Ex 1
- More Word Problems Using Quadratic Equations – Ex 2
- More Word Problems Using Quadratic Equations – Example 3
- Solving Quadratic Inequalities – The Basics
- Solving Quadratic Inequalities
- Solving Quadratic Inequalities – A Common Mistake
- Solving Quadratic Inequalities – Ex 1
- Solving Quadratic Inequalities – Ex 2
- Solving Quadratic Inequalities – Ex 3
- Solving Quadratic Inequalities, More Ex 1
- Solving Quadratic Inequalities, More Ex 2
- Solving Quadratic Inequalities, More Ex 3
- Solving Quadratic Inequalities, More Ex 4
- Solving Quadratic Inequalities – More Examples
- Rational Expressions and Domain
- Finding the Domain of an Expression Involving Fractions – Ex 1
- Finding the Domain of an Expression Involving Fractions – Ex 2
- Finding the Domain of an Expression Involving Fractions – Ex 3
- Finding Domains of Functions Involving Radicals (Square Roots to be More Precise!) – Example 1
- Finding Domains of Functions Involving Radicals (Square Roots to be More Precise!) – Ex 2
- Finding Domains of Functions Involving Radicals (Square Roots to be More Precise!) – Ex 3
- Finding the Domain of a Function Algebraically (No graph!)
- Rational Expressions: Writing in Lowest Terms – Ex 1
- Rational Expressions: Writing in Lowest Terms – Ex 2
- Rational Expressions: Adding and Subtracting
- Rational Expressions: Adding and Subtracting. Ex 1
- Rational Expressions: Adding and Subtracting. Ex 2
- Rational Expressions: Multiplying and Dividing. Ex 1
- Rational Expressions: Multiplying and Dividing. Ex 2
- Rational Expressions: Multiplying and Dividing. Ex 3
- Rational Equations: Solving
- Solving a Basic Rational Equation – Ex 1
- Solving a Basic Rational Equation – Ex 2
- Solving a Basic Rational Equation – Ex 3
- Solving a Basic Rational Equation – Ex 4
- Solving a Basic Rational Equation – Ex 5
- Graphing Some Basic Rational Functions – Example 1
- Graphing a Rational Function – Example 1
- Graphing a Rational Function – Example 2
- Graphing a Rational Function – Example 3
- Graphing a Rational Function – Example 4
- Rational Functions: Shortcut to Find Horizontal Asymptotes
- Rational Functions: Vertical Asymptotes
- Rational Functions: Slant Asymptotes
- Find Asymptotes of a Rational Function (Vertical and Oblique/Slant)
- Find Asymptotes of a Rational Function (Vertical and Oblique/Slant), Ex 2
- Graphing a Rational Function that has an Oblique/Slant Asymptote and a Vertical Asymptote
- Rational Inequalities: Solving
- Solving a Rational Inequality – Ex 1
- Solving a Rational Inequality – Ex 2
- Solving a Rational Inequality – Ex 3
- Solving a Rational Inequality, More Examples – Ex 1
- Solving a Rational Inequality, More Examples – Example 2
- Solving a Rational Inequality, More Examples – Example 3
- Piecewise Defined Functions: Graphing
- Graphing a Piece-Wise Defined Function – Another Example
- Piecewise Functions: Find the Formula from a Graph – Ex 1
- Piecewise Functions: Find the Formula from a Graph – Ex 2
- Evaluating Piecewise Defined Functions
- Functions: Adding and Subtracting
- Functions: Multiplying and Dividing
- Composition of Functions
- Finding Functions that Form a Particular Composite Function
- The Vertical Line Test
- X-Intercepts and Y-Intercepts of a Functions and Finding Them! Example 1
- X-Intercepts and Y-Intercepts of a Functions and Finding Them! Example 2
- The Difference Quotient – Example 1
- The Difference Quotient – Example 2
- Graphing the Greatest Integer or Floor Function
- Solving an Equation for a Specified Variable
- Solving Equations Involving Square Roots
- Solving an Equation Involving a Single Radical (Square Root) – Ex 1
- Solving an Equation Involving a Single Radical (Square Root) – Ex 2
- Solving an Equation Involving a Single Radical (Square Root) – Ex 3
- Solving an Equation Containing Two Radicals – Ex 1
- Solving an Equation Containing Two Radicals – Ex 2
- Solving an Equation Containing Two Radicals – Ex 3
- Solving Equations Involving Rational Exponents
- Solving an Equation Involving Rational Exponents – Ex 1
- Solving an Equation Involving Rational Exponents – Ex 2
- Solving an Equation Involving Rational Exponents – Ex 3
- The Cartesian Coordinate System – A few basic questions
- Basic Graphs that Every Algebra Student Should Know!!
- Graphing Equations by Plotting Points – Example 1
- Graphing Equations by Plotting Points – Example 2
- Graphing Equations by Plotting Points – Example 3
- Finding Domain and Range of a Function using a Graph
- Domain and Range From a Graph
- Local Max/Min, Inc/Dec: On a Graph
- Finding Limits From a Graph
- Horizontal and Vertical Graph Transformations
- Horizontal And Vertical Graph Stretches and Compressions Part 1 of 3
- Horizontal And Vertical Graph Stretches and Compressions Part 2 of 3
- Graph Transformations about the X-axis and Y-axis
- Graphing Using Graph Transformations – Ex 1
- Graphing Using Graph Transformations – Ex 2
- Inverse Functions – The Basics!
- Inverse of a Function
- Finding the Inverse of a Function or Showing One Does not Exist, Ex 2
- Finding the Inverse of a Function or Showing One Does not Exist, Ex 3
- Finding the Inverse of a Function or Showing One Does not Exist, Ex 4
- Solving a Linear System of Equations by Graphing
- Linear System of Equations: Row Reducing – Part 1
- Linear System of Equations: Row Reducing – Part 2
- Linear System of Equations: Solving using Substitution
- Linear System of Equations: Solving using Elimination by Addition
- Solving a System of Equations Involving 3 Variables Using Elimination by Addition – Example 1
- Solving a System of Equations Involving 3 Variables Using Elimination by Addition – Example 2
- Solving a System of Equations Involving 3 Variables Using Elimination by Addition – Example 3
- Systems of Linear Equations – Inconsistent Systems Using Elimination by Addition – Example 1
- Systems of Linear Equations – Inconsistent Systems Using Elimination by Addition – Example 2
- Systems of Linear Equations – Inconsistent Systems Using Elimination by Addition – Example 3
- Solving a Dependent System of Linear Equations involving 3 Variables
- Using Gauss-Jordan to Solve a System of Three Linear Equations – Example 1
- Using Gauss-Jordan to Solve a System of Three Linear Equations – Example 2
- Cramer’s Rule to Solve a System of 3 Linear Equations – Example 1
- Cramer’s Rule to Solve a System of 3 Linear Equations – Example 2
- The Distance Formula
- The Distance Formula and Finding the Distance Between Two Points – Example 1
- The Distance Formula and Finding the Distance Between Two Points – Example 2
- The Midpoint Formula
- The Midpoint Formula – Finding the Midpoint
- Collinearity and Distance: Determining if Three Points are Collinear, Example 1
- Collinearity and Distance: Determining if Three Points are Collinear, Example 2
- Collinearity and Distance: Determining if Three Points are Collinear, Example 3
- Word Problem: Distance, Rate, and Time
- Pythagorean Theorem
- Word Problems Using the Pythagorean Theorem – Ex 1
- Word Problems Using the Pythagorean Theorem – Ex 2
- Word Problems Using the Pythagorean Theorem – Ex 3
- Word Problem Involving Perimeter of a Triangle – Ex 1
- Word Problem Involving Perimeter of a Triangle – Ex 2
- Word Problem Involving the Perimeter of a Rectangle – Ex 1
- Word Problem Involving the Perimeter of a Rectangle – Ex 2
- Coterminal Angles – Example 1
- Coterminal Angles – Example 2
- Coterminal Angles – Example 3
- Finding the Quadrant in Which an Angle Lies – Example 1
- Finding the Quadrant in Which an Angle Lies – Example 2
- Finding the Quadrant in Which an Angle Lies – Example 3
- Adding and Subtracting Complex (Imaginary) Numbers
- Rewriting Radicals using Complex Numbers
- Rewriting Powers of ‘ i ‘ – Ex 1
- Rewriting Powers of ‘ i ‘ – Ex 2
- Complex Numbers: Graphing, Adding, Subtracting
- Complex Numbers: Multiplying and Dividing
- Complex Numbers: Multiplying – Ex 1
- Complex Numbers: Multiplying – Ex 2
- Complex Numbers: Dividing – Ex 1
- Complex Numbers: Dividing – Ex 2
- Complex Numbers: Dividing – Ex 3
- Conic Sections: Parabolas, Part 1
- Conic Sections: Parabolas, Part 2 (Directrix and Focus)
- Conic Sections: Parabolas, Part 3 (Focus and Directrix)
- Conic Sections: Parabolas, Part 4 (Focus and Directrix)
- Conic Sections: Parabolas, Part 5 (Focus and Directrix)
- Graphing a Parabola
- Conic Sections: Hyperbolas, An Introduction
- Conic Sections: Hyperbolas, An Introduction – Graphing Example
- Finding the Equation for a Hyperbola Given the Graph – Example 1
- Conic Sections: Graphing Ellipses – Part 1
- The Center-Radius Form for a Circle – A few Basic Questions, Example 1
- The Center-Radius Form for a Circle – A few Basic Questions, Example 2
- Finding the Center-Radius Form of a Circle by Completing the Square – Example 1
- Finding the Center-Radius Form of a Circle by Completing the Square – Example 2
- Finding the Center-Radius Form of a Circle by Completing the Square – Example 3
- Identifying a Conic from an Equation by Completing the Square, Ex 1
- Identifying a Conic from an Equation by Completing the Square, Ex 2
- Identifying a Conic from an Equation by Completing the Square, Ex 3
- Matrices: Basic Matrix Operations (add, subtract, multiply by constant)
- Matrices: Multiplying a Matrix by another Matrix
- Finding the Inverse of a 3 x 3 Matrix using Determinants and Cofactors – Example 1
- Finding the Inverse of a 3 x 3 Matrix using Determinants and Cofactors – Example 2
- Finding the Inverse of a 3 x 3 Matrix using Determinants and Cofactors – Example 3
- Logarithms: Properties of Logarithms – Part 1
- Logarithms: Properties of Logarithms – Part 2
- Properties of Logarithms
- Solving Logarithmic Equations – Example 1
- Solving Logarithmic Equations – Example 2
- Change of Base Formula for Logarithms
- Solving Exponential Equations
- Exponential Function From a Graph
- Word Problem: Exponential Growth
- Factoring Trigonometric Expressions, Example 1
- Factoring and Simplifying Trigonometric Expressions – Example 2
- Simplifying Products of Binomials Involving Trigonometric Functions, Ex 2
- Binomial Theorem – Ex 1
- Binomial Theorem – Ex 2
- Arithmetic Sequences: A Quick Intro
- Arithmetic Sequences: Finding a General Formula Given Two Terms
- Finding the Sum of a Finite Arithmetic Series
- Proof by Induction – Example 1
- Proof by Induction – Example 2
- Proof by Induction – Example 3
- Understanding Simple Interest and Compound Interest
- Deriving the Annual Compound Interest Formula
- Compound Interest – More than Once Per Year
- Compound Interest – More than Once Per Year – Part 2
- Finding an Interest Rate to Match Certain Financial Goals, Ex 1
- Finding an Interest Rate to Match Certain Financial Goals, Ex 2
- Finding an Interest Rate to Match Certain Financial Goals, Ex 3
- Word Problem: Finding Consecutive Numbers That Satisfy a Given Requirement – Ex 2
- Word Problem: Finding Consecutive Numbers That Satisfy a Given Requirement – Ex 3