**8/18/2014
**Prove
*log*_{a
}(1/x)
= *log
*_{1/}_{a}(x).

**Scroll
down for the solution.**

**8/18/2014
**Solution.
**If****
***log*_{a
}**(1/x)****
= ***p***,
then a**^{p
}**=
(1/x) so that ****x****
= 1/ a**^{p}**
****=
(1/a)**^{p}**.**^{}**S****witching
to log form: ***log
*_{1/}_{a}**(x)****
= ***p***...which
is what we needed to prove!**^{}**
**